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Abstract—The use of random finite sets (RFSs) in simultaneous
localization and mapping (SLAM) has many advantages over the
traditional random vector based approaches. These include the
consideration of detection and clutter statistics and the circum-
vention of data association and map management heuristics in the
estimation stage. To take full advantage of RFS based estimators
in feature based SLAM, the feature detector’s detection and false
alarm statistics should be modelled and used in each SLAM esti-
mation update stage. This paper presents principled techniques to
obtain these statistics for semantic features extracted from laser
range data, and focusses on the example of the extraction of
circular cross-sectioned features, such as trees, pillars and lamp-
posts, in outdoor environments. Comparisons of an RFS based
SLAM algorithm - Rao-Blackwellized, Probability Hypothesis
Density (RB-PHD)-SLAM, which utilizes the derived, variable
feature probabilities of detection, and the same SLAM algo-
rithm based on the typically assumed constant feature detection
probabilities, within the sensor field of view, are provided. The
results demonstrate the advantages of explicitly modelling feature
detection statistics.

I. INTRODUCTION

SLAM is a problem in robotics in which a robot uses
its available sensor measurements to estimate a map of the
operating environment, while concurrently determining its
pose relative to the map. The general probabilistic approach
currently adopted by the mobile robotics community uses
random vectors to represent the robot and map state, and
solves SLAM through stochastic filtering, or batch estimation
[4]. Recently, a different representation has been introduced
for feature-based maps using RFSs [16, 17], in which random
vectors, typically representing the spatial location of individual
landmarks, are placed in a set in which the cardinality (feature
number) is also a random variable.

There are several benefits in using a RFS-based filtering
approach to estimate the map in SLAM compared to a
vector-based approach. Typically in vector-based approaches,
the correspondence between measurements and landmarks is
performed separately from the actual filter, and is determined
using heuristics (e.g., by comparing the measurement to land-
mark likelihood with a preset threshold). These correspon-
dences are required to determine which landmark estimate is
updated by which measurement. In contrast, under an RFS
SLAM framework, data association becomes a part of the
landmark estimate update process for which Bayes theorem
is applied. Essentially, the RFS approach updates landmark
estimates by simultaneously associating them with every mea-

surement, eliminating the need for heuristics. Another benefit
of RFS-based filtering is that it accounts for detection statistics
(feature probabilities of detection and false alarm). Finally,
the RFS approach not only estimates the spatial position
of landmarks, but also the number of landmarks that have
entered the field of view of the robot’s sensors. This is
because the cardinality of a RFS is also a random variable
that is estimated. Therefore, to fully utilize the capabilities of
RFS based filters, modelling of a feature detector’s detection
statistics is necessary. Such statistics can be easily estimated in
simulations, and approximated by various detection theoretic
methods developed for radar [1, 16]. However, the most pop-
ular sensors used in robotics (vision and laser range finders)
are typically used with complex, higher level feature detectors,
often unaccompanied by detection statistics.

This paper proposes a method of obtaining the detection
statistics of a laser data feature extractor, and its use in a RFS-
SLAM implementation, known as Probability Hypothesis Den-
sity (PHD)-SLAM, one of the simplest mathematical finite set
statistics (FISST) tools for estimation with RFSs, developed by
Mahler [12]. The contribution of this paper is to demonstrate
the implementation of PHD-SLAM with commonly used, 2D
scanning laser range finders, and the importance of modelling
sensor detection statistics in a principled manner. A simple
feature detection strategy will be presented, in which the
expected and variable probabilities of detection associated with
laser range data are derived. Results of applying the laser
based feature detector under a RB-PHD-SLAM framework
will be presented and compared with results obtained from
the same algorithm, with the usually assumed constant feature
probabilities of detection within the sensor’s field of view.

II. RANDOM FINITE SET SLAM AND ITS REQUIREMENTS

In this section RFS-SLAM is introduced and its inclusion
of the detection statistics of a feature detector is demonstrated.

A. System Model

SLAM is a state estimation problem in which the best
estimate of the robot trajectory and map feature positions is
sought over time, using all sensor measurements. In general,
we can represent the underlying stochastic system using the



non-linear discrete-time equations:

xk = g(xk−1,uk−1, δk−1) (1)

zik = h(xk,m
j , εk) (2)

where
xk represents the robot pose at time-step k,
g is the robot motion model,
uk is the the odometry measurement at time-step k,
δk is the process noise at time-step k,
zikis the i-th measurement vector at time-step k,
h is the sensor-specific measurement model,
mj is a random vector for the position of landmark j,
εk is the spatial measurement noise

Traditional vector-based approaches to SLAM concatenate
random vectors for the robot and landmarks into a single
vector for the estimation process. Furthermore, the generally
complex data association problem needs to be solved so that
i and j correspond to the same landmark. Within the RFS
approach, the observed landmarks up to and including time-
step k, are defined as

Mk ≡ {m1,m2, ...,mm} (3)

where the number of landmarks, |Mk| = m, is also a random
variable. In general, the landmark from which a measurement
is generated is unknown. Furthermore, there is a probability
of detection, PD , associated with every landmark, implying
that it may be missed with probability 1−PD. Measurements
may also be generated from sensor noise or objects of non-
interest (clutter), with known distributions. The set of all n
measurements at time-step k is defined as:

Zk ≡ {z1k, z2k, ...,znk} (4)

Using a probabilistic framework and a filtering approach, the
probability density function (PDF)

p (x0:k,Mk|Zk,u0:k) (5)

is sought, relative to the initial robot’s pose, at each time step.

B. Rao-Blackwellized (RB)-Probability Hypothesis Density
(PHD) SLAM

The posterior PDF (5) can be factored into the form [13, 16]

p (x0:k|Zk,u0:k) p (Mk|x0:k,Zk,u0:k) (6)

such that the first term in (6) is a conditional PDF on the robot
trajectory and sampled using particles. The second term in (6)
is the density of the map conditioned on the robot trajectory,
which can be represented using a Gaussian mixture (GM).
In the RFS-based approach, the map RFS is also assumed to
follow a multi-object Poisson distribution1. This allows the
PDF of the map RFS to be approximated as a time varying

1This implies that features are independently and identically distributed,
while the number of features is Poisson distributed

intensity function, vk, represented as a GM:

vk =
∑
i

ω
[i]
k N

(
µ
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[i]
k

)
. (7)

In contrast to vector-based Rao-Blackwellized (RB)-particle
filter (PF) approaches, which use the Extended Kalman filter
(EKF) to update the Gaussians for individual landmarks, a
probability hypothesis density (PHD) filter is used to update
the map intensity function [16]. A brief overview of the main
steps in the RB-PHD filter now follows, highlighting the
importance of detection statistics.

1) Particle Propagation: At time-step k, the particles rep-
resenting the prior distribution,

x
[i]
k−1 ∼ p (x0:k−1|Z1:k−1,u0:k−1) (8)

are propagated forward in time by sampling the motion noise,
δ
[i]
k , and using the motion model (1):

x
[i]
k = g(x

[i]
k−1,uk−1, δ

[i]
k−1) ∼ p (x0:k|Z1:k−1,u0:k−1) (9)

2) Generate Birth Gaussians: For each particle, its map
intensity from the previous update, vk−1, is augmented with
|Zk−1| new Gaussians with (an arbitrarily small) weight, ωB ,
according to the PHD filter predictor equation:

v−k = v+k−1 +

|Zk−1|∑
i

ωBN
(
µ

[i]
k ,Σ

[i]
k

)
(10)

These new Gaussians, created at time-step k, represent poten-
tial new landmarks in the map, with means and covariances,(
µ

[i]
k ,Σ

[i]
k

)
. These are determined by using the inverse mea-

surement model from equation (2), i.e. mj = h−1(xk, zk),
with the previously updated pose x[i]

k−1 , and every mea-
surement in the previous measurement set, Zk−1. If the
measurement model is not invertible, another strategy has to
be devised to generate potential new features. These can be
random Gaussians with large covariances in the areas were
new features could be observed.

3) Map Update: The map intensity for each particle is
updated with the latest measurements according to the PHD
filter corrector equation:

v+k = (1− PD)v−k +

|Zk|∑
i

N−
k∑
j

ωi,j
k N

(
µ

[i,j]
k ,Σ

[i,j]
k

)
(11)

where N−k is the number of Gaussians that comprise v−k . Here
the first term is a copy of v−k with lowered weights to account
for the possibility of missed detections. The second term adds
a new Gaussian for each pair comprising a new measurement
and an existing Gaussian in the intensity map. Note that instead
of determining data association based on heuristics, the PHD
filter determines how much a measurement should influence
each landmark estimate. This is carried out by the weighting



factor calculation:
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where q() is the measurement likelihood given a feature
estimate, and κ is the clutter density. The mean and covariance
parameters for each new Gaussian, created from measurement
i and landmark j,

(
µ

[i,j]
k ,Σ

[i,j]
k

)
, are determined using the

EKF update step (Note that other variants of the Kalman filter
(KF) would also be possible).

4) Importance Weighting and Re-sampling: The weighting
and re-sampling of particles is the method used to update
the robot trajectory PDF after propagation (also known as the
proposal distribution). This is given by

p (x0:k|Z1:k−1,u0:k−1) . (13)

This has to to be updated to become a new PDF representing
the robot trajectory after measurement updates (or the target
distribution),

p (x0:k|Z1:k,u0:k−1) . (14)

Bayes rule allows the weighting distribution in terms of (13)
and (14) to be expressed as

p (x0:k|Z1:k−1,u0:k−1)

p (x0:k|Z1:k,u0:k−1)
= ηp (Zk|x0:k,Z1:k−1) , (15)

in which η is a normalizing constant. Since (13) and (14) are
sampled using particles, the weighting distribution, defined as
wk, is also sampled such that a weight is calculated for each
particle. To solve (15), we use Bayes Theorem to express it
as:

wk ≡ p (Zk|x0:k,Z1:k−1)

= p (Zk|Mk,x0:k)
p (Mk|Z1:k−1,x0:k)

p (Mk|Z1:k,x0:k)
(16)

Equation (16) can be solved because the map RFS is assumed
to be multi-object, Poisson distributed. Note from (16) that the
choice of the map,Mk , for which the expression is evaluated
in its general form is theoretically arbitrary since the left-hand
side of (16) is independent of the map. This has led to multiple
solutions that adopt the empty-set strategy, the single-feature
strategy and multi-feature strategy in determining the particle
weight in (16). It was previously shown that the choice of
the map can have a significant effect on the performance of
the filter and that the performance multi-feature strategy is
superior to the others [9]. This is achieved at the cost of
an increased computational cost. The multi-feature strategy
is adopted in this work.

5) Merging and Pruning of the Map: Gaussians with small
weights can be eliminated from the intensity function, while
Gaussians that are close to each other can be merged [15, 17]
This approximation is critical in limiting the computational
requirement of the RB-PHD filter.

Importantly, within the above five steps, the map update

and particle weighting steps require the knowledge of both the
probability of detection of the feature detector and the distribu-
tion (PHD) for its false alarms. These important requirements
are the subject of the next section.

III. INFERRING DETECTION STATISTICS FOR SEMANTIC
FEATURES

A. Estimating a Feature’s Probability of Detection

Within the autonomous robotic navigation literature, feature
detection statistics are largely ignored, and the uncertainty is
considered to lie solely in the spatial domain, and typically
modelled as range and bearing uncertainties [4, 20]. This
implies that the probabilities of detection of features are
assumed to be unity, and the probabilities of false alarm are
assumed to be zero. In turn, it is then considered the task
of the external map management and association heuristics to
“deal” with false alarms and missed detections, before map
estimation takes place.

Within the tracking community, detection statistics are con-
sidered to be of prime importance, however object detection
probabilities are usually naively considered to be constant
during trials, despite the fact that the relative positions of
objects and the sensor, and any occlusions typically has a
large effect on that object’s detection probability [11]. Little
attention is given to the shape of a sensor’s field of view and
the possibility of partial or total object occlusion, and their
quantified effects on the expected detection statistics.

In [6], the requirement for a feature detector is removed by
modelling laser range data, in which multiple measurements
can be produced, by single ”extended” features. The number
of such extended feature measurements is modelled as a
Poisson RFS. They model the probability of detection using
the estimated features.

The aim of this section is to therefore provide a quantified
model of the probabilities of detection and false alarm, based
on laser range based features. This model does not use any
information on the feature detector itself and can therefore be
used with any detector that estimates both the position and
shape of the object. This excludes line detectors that don’t
provide beginning and end points. In the context of [6], the
method to calculate probabilities of detection proposed in this
section can be used not only to calculate these for Granstrom’s
feature detector, but also to estimate the mean of his proposed
extended feature RFS.

As shown in Figure 1, given an estimate of the robot’s
location and the location and other attributes, such as the
shape, of features (i.e. a SLAM estimate), the number of
laser range points that the feature is expected to return can be
estimated. This point estimation process is a sensor modelling
technique referred to as ray tracing in the robotics literature
[20]. Comparing estimated and measured distances, allows
expected feature estimates to be labelled as either occluded,
partially occluded or unoccluded. The number of estimated,
unoccluded points per feature determines the proportion of
the landmark that is in the field of view of the sensor. The
analysis in this section demonstrates that feature probabilities



R

r

r

Fig. 1: Analysis of range data from a circular shaped feature.
Based on the SLAM state estimate, the laser range beams that
would hit the feature, if not occluded, can be determined (red
and yellow circles). Beams with range values several times the
range standard deviation shorter than expected (red points)
are discarded from the detection probability analysis. The
remaining (yellow) points are used to estimate the feature’s
probability of detection.

of detection can be experimentally quantified based on this
number, via statistical analyses on laser range data sets.
Initially, a dataset is required from an environment where the
ground truth positions of features are known, via independent
means. A simple way to achieve this is through the use of
features identifiable by humans - i.e. semantic features.

B. Estimating Probabilities of False Alarm

In the case of the probability of false alarm it is infeasible
to theoretically model every possible laser range scan that
does not contain a semantic feature of choice. Importantly, the
statistical representation of false alarms in RB-PHD- SLAM is
a Poisson random set, which only requires an estimate of their
expected number. In a manner similar to the probabilities of
detection outlined above, the statistical analysis of laser range
based data, known to not contain the chosen semantic features,
can yield an informative estimate of the probability of false
alarm.

These concepts for estimating feature detection and false
alarm probabilities will be applied to a laser range finder based
circle detector in Section V. The next section introduces the
circle detector itself, in the context of well known feature
detectors within the robotics field.

IV. LASER BASED FEATURES AND THEIR DETECTION
STATISTICS

This section provides a brief overview of the main feature
detection algorithms applied to laser range data and, at the
same time, highlights the publicized problems in their appli-
cation to data sets in which chosen feature types yield few
data points per scan. It will then present a simple circular
feature detector, which can be applied in outdoor scenarios in
which approximately circular cross-sectioned features such as
trees, pillars and lamp posts are abundant. This circular feature
detector is an extension of that proposed by Durrant-Whyte et
al [3].

A. Why Semantic Features?

Since laser range finders yield range decisions, it should be
possible to incorporate all of these into a SLAM estimation
algorithm. Various mapping algorithms achieve this, via scan
matching techniques [10], although these techniques typically
require good initial estimated robot pose to scan alignment
estimates for them to function correctly.

The reasons why most SLAM algorithms do not attempt to
process every laser range value are as follows. Firstly, contrary
to many radar and sonar devices, commercially available laser
range finders usually internally process the received power
values to provide range decisions at distinct bearing angles,
instead of outputting the entire received power array (a-
scope) at predefined range increments. This means that the
device makes its own hypothesis test on a per a-scope basis,
and provides only the final decision of this test, yielding a
single range decision. Under favorable operating conditions,
these range decisions typically correspond well with the true
distances to objects, however they are still prone to the
problems of false alarms and missed detections under sub-
optimal target/environmental conditions. Secondly, because of
the high angular resolution of laser range finders, they usually
provide the user with a multitude of range decisions, far in
excess of which most SLAM algorithms can process.

These two facts have advocated the compression of laser
range data into so called high level, and typically semantic,
features. This is to minimize the negative impact of individual
false alarms and missed detections and simultaneously keep
SLAM input data levels manageable.

B. Current Laser Range Based Feature Detectors

Global detectors, such as RANSAC and the Hough trans-
form, have been applied to laser range data, mostly to extract
lines [18]. These methods have several advantages, such as
tolerance to partial occlusions, however they rely on many
feature inliers being available within the laser data sets.

In [19] Nuñez et al demonstrated a detector capable of
extracting both line segments and circular curves by estimating
the curvature of the scan. Zero curvature segments are detected
as lines and constant curvature segments are detected as
circular arcs. The algorithm was designed to work with indoor
scans where circles are usually observed at close range and
return many range values.

Other laser point based feature detectors include the re-
cursive split and merge algorithm [7] and Gauss-Newton
extraction algorithm [21].

Despite the varying degrees of mathematical rigor in state
of the art feature detection algorithms, global detectors have
been shown to not improve the results enough to compensate
for their increased computational complexity [18]. Durrant-
Whyte et al presented a simple detector which seeks clusters
of points and assigns a circle to represent these, with diameter
equal to the distance between the first and last points of the
cluster. To demonstrate the importance of estimating detection
statistics, and their integration into PHD-SLAM, the simple
circle detector of [3] will be extended in the next section,



for the robust detection of circular cross sectioned objects
including pillars, trees and lamp posts.

C. Detection of Circular Objects

The circle based detector of [3] is extended here by,
replacing it’s heuristic estimation of the circle parameters by a
non-linear optimization approach. Also an additional step has
been added to remove some of the false alarms produced by
the algorithm.

The detector works in 3 steps: Clustering; circle fitting and
false alarm reduction.

1) Clustering: The first step of the algorithm is to segment
the laser scan in a set of simple clusters of closely spaced
points. To obtain these clusters the whole scan is iterated
in its natural order. If the Euclidean distance between two
consecutive points is greater than a threshold, a break between
two different clusters is declared.

2) Circle Fitting: A circle is fitted to each cluster by
minimizing the squared error of the fit as shown in equation
(17).

minimize
xc,yc,rc

∑
i

(
√

(xi − xc)2 + (yi − yc)2 − rc)2 (17)

Where (xc, yc, rc) is the center and radius of the circle and
(xi, yi) are the coordinates of each laser range point in the
cluster. This optimization problem is the same as the one
presented in [21] but is solved using the Levenberg-Marquardt
algorithm, which has been shown to be more robust than the
Gauss-Newton method [14]. To initialize the algorithm the
mean point position is used as the circle’s center and its radius
is set as half the distance between the first and last point.

3) False Alarm Reduction: At this stage every cluster has
an associated, fitted circle. Cluster pruning is then necessary,
in which clusters and their corresponding circles are removed
based on a detection theoretic, statistical analysis of their
parameters.

Each cluster is characterized by three parameters:
• Fitting Error for the circle fit (FE)

FE =
∑
i

(
√
(xi − xc)2 + (yi − yc)2 − rc)2 (18)

• Radius of the detected circle (rc)
• Convexity (C) of the circle. This is a measure of the

difference between the distance from the robot to the
center of the fitted circle and the mean of the points (See
Figure 2) and is given by

C =
√
(xr − xc)2 + (yr − yc)2

−

√√√√(xr −
1

n

n∑
i

xi)2 + (yr −
1

n

n∑
i

yi)2 (19)

To achieve false alarm reduction, based on the above pa-
rameters, concepts from detection theory can be applied [8].
Histograms representing correctly and falsely detected circular
features were generated with respect to each of the above
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Fig. 2: If the mean of the laser returns (red point) is further
away from the robot than the center of the estimated circle
(orange point) then the object does not form a convex circular
cross section with respect to the robot’s location.

parameters. This required the generation of ground truth
information within a test area, containing the true centers and
radii of circular sectioned objects, such as trees. This test
area comprised a ground truth map of a park area near the
Universidad de Chile.

Naturally the generality of such an environment is ques-
tionable, in terms of the circular features contained within it.
However, since the SLAM experiments were to take place in
an environment containing a significant number of trees, this
environment was deemed sufficiently general. In general, if the
sought features are based on any type of semantic information,
detectors for those semantics can be tuned in a similar manner,
using ground truth data sets from environments known to
contain a significant number of the type of feature sought.

Within the park environment, multiple 2D laser scans from
different positions were recorded and approximately manually
aligned to form an initialization for the Iterative Closest Point
[2] algorithm, which in turn generated a more exact alignment
of the data [10]. This resulted in a registered 2D point cloud
of the Park. Point clusters were then manually extracted and
compared to the actual environment to determine if they
corresponded to actual circular sectioned features. Based on
positive matches, the cluster centers and actual features’ radii
(measured by hand) were noted. This resulted in a list of
circular feature (typically tree trunk) center coordinates and
their respective radii. ICP [2] also determined the position at
which each scan was recorded.

After the ground truth list was attained, the laser range
finder and circular feature detector were used to automati-
cally detect multiple circular sectioned features, at multiple
locations, based on the procedure outlined in Sections IV-C1
and IV-C2 within the test area. From the multiple detections,
the histograms in Figures 3, 4 and 5 were generated. These
histograms could be used directly to achieve false alarm reduc-
tion. From each histogram it is evident that the application of
appropriate, independent detection thresholds on the FE, radius
and convexity measure could be applied so as to reject the
false alarms which correspond to feature parameters outside
of the bounds which contain the detections. However, care is
necessary before the application of such a simplistic treatment,
since any correlation between these parameters must first be
determined.
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Fig. 3: The fitting error can be used to remove some of the
false alarms.
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Fig. 4: Histogram for the detected radius. Note: The tail for
the false alarm distribution is very long and is not shown in
this figure.

To determine such correlations, and appropriate methods to
discard some of the false alarms, standard techniques such as
Fisher’s linear discriminant [5] or Hotelling ellipsoids [8] can
be used. After comparing these two methods, higher detection
rates, for given false alarm rates (i.e. superior Receiver Op-
erating Characteristics (ROCs)) were noted for the Hotelling
ellipsoidal method - which is therefore adopted here.

Hotelling Ellipsoid Method

This method fits a multivariate Normal distribution to the
detected circle’s parameters and uses the distribution param-
eters to create a confidence ellipsoid, as shown in Figure 6.
This figure shows the distribution of the three variables for the
case of true detections and a corresponding 99.9% confidence
ellipsoid representing a multivariate Normal distribution, based
on the parametric data points. The size of the ellipse can be
determined using the estimated covariance and the multivariate
normal distribution. The Hotelling Ellipsoidal method will
reject any measurement that falls outside of the ellipse.
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Fig. 5: Histogram for the Convexity measure. Note: The tails
for the false alarm distribution are very long and are not shown
in this figure.

Fig. 6: A Gaussian approximation of the detections can be
used to generate an ellipse to remove much of false alarm and
keep most of the detections.

V. ON-LINE DETERMINATION OF DETECTION STATISTICS

In this section the results of applying the method described
in section III to the detector presented in section IV using
the ground truth dataset will be shown. The circular feature
detector was applied to the scans collected from the park data
set. By using the known pose of the robot and landmark,
every measurement was manually associated with it’s closest
feature. If the distance between these measurements and their
closest associated features was larger than one meter, the
measurements were deemed to be false alarms.

The associated measurements were used to determine the
probability of detection of the algorithm conditioned on the
number of unoccluded points. First the expected number of
unoccluded points for each feature was calculated based on
the estimated robot pose and feature positions. By determining
the ratio of actual detections to the total number of times
that a specific number of unoccluded points was calculated,
the probability of detection for each detected feature was
determined (Equation 21).

PD(mi|Mk,xk) ∼ PD(mi|np = Np(Mk,xk)) (20)



Number of unoccluded points PD

0 0.0014 (383/273025)
1 0.0244 (1514/62025)
2 0.0696 (1990/28582)
3 0.3595 (6983/19423)
4 0.7562 (7845/10374)
5 0.8854 (6118/6909)
6 0.8987 (3761/4185)
7 0.7824 (2078/2656)
8 0.7607 (1068/1404)
9 0.7679 (870/1133)

TABLE I: The number of unoccluded points greatly influences
the probability of detection. The amount of detections and
instances were specific number of points was expected is
shown in brackets.

PD(mi|np) ∼
∑Ns

j=0

∑
m∈Mj

Np(m,xj) = np ∧ C(m, j)∑Ns

j=0

∑
m∈Mj

Np(m,xj) = np
(21)

Where
np is the number of unoccluded points,
Np() is the function that estimates np by doing ray tracing,
Ns is the total number of scans in the dataset,
C(m, j) is an indicator function that shows whether feature
m was detected at time j.

As can be seen in Table I the probability of detecting a
circular object (in this case a tree) is highly dependant on the
number of unoccluded points. It should be noted that there
are less instances where the number of unoccluded points was
high, so for higher number of unoccluded points the variance
of the estimated PD will be higher. In the implementation of
the RFS-SLAM if more than six points were not occluded the
probabilities of detection were replaced with the probability of
six unoccluded points. Also the probabilities that were lower
than 10% were therefore replaced with a zero.

Determining the distribution of false alarms is much eas-
ier since the RFS-PHD framework does not model spatial
variations on its distribution. Only the distribution for the
number of false alarms per laser scan is necessary, which
does not require any SLAM map estimates. Accordingly, the
false alarm histogram, obtained by plotting the number of
times a particular false alarm number occurs over Ns scans, is
shown in figure 7 where a continuous Poisson distribution is
also fitted to the data. Although the PHD Filter assumes this
Poisson type distribution, it is noted that the discrete histogram
is similar to it. The average number of false alarms Nfa per
laser scan was estimated to be:

E(Nfa) = 9.27 (22)

VI. RB-PHD-SLAM WITH CIRCULAR FEATURE
DETECTION STATISTICS

In this section a comparison of RB-PHD-SLAM in a park
environment, based on the use of the derived detection statis-
tics and a naive implementation with assumed constant feature
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Fig. 7: Histogram for the false alarms. A Poisson distribution
is fitted to the data.

detection probabilities, within the 40m radius sensor field of
view, is shown in Figure 8.

The robotic platform used was a Clearpath Husky A-200
robot equipped with a Sick LD-LRS-1000 laser range finder.
The Husky’s wheel encoders provided odometry measure-
ments u0:k−1 for the motion model in Equation 8. The robot
was run in the same park used to determine the detection
statistics.

Figures 8a and 8b show the performance of RB-PHD-
SLAM. The map estimates are represented by plotting an
ellipse for each gaussian in the gaussian mixture (v+k (Equation
11) and estimated vehicle trajectories are built using the
current position for the particle x[i]

k (Equation 9) with the
highest weight wk (Equation 16) at every time step. A superior
SLAM performance is indicated in Figure 8a, in which the
vehicle trajectory and quality of the associated map estimates,
in terms of circular feature location and number, out-performs
the assumed constant detection probability based RB-PHD-
SLAM results shown in Figure 8b. In the latter case, the
mismatch between the real and estimated probabilities of
detection causes features to be removed from the map soon
after they leave the field of view of the robot’s laser scanner.

VII. CONCLUSIONS

The importance of modelling detection statistics within real
SLAM experiments has been high-lighted in this paper. A
simple semantic feature based detector was presented, together
with detection theoretic based methods for the evaluation of
each features’ probabilities of detection and false alarm. The
methods presented can be used with any feature detector that
estimates the shape of an object. The techniques were applied
to a simple circle detector, for use in environments in which
multiple circular cross sectioned features are expected.

The derived detection statistics where used in a RB-PHD-
SLAM framework in a park environment, in which the
primary circular sectioned features were trees. The results
demonstrated superior SLAM estimates, in terms of vehicle
trajectory, map feature number and location estimates when
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Fig. 8: RB-PHD-SLAM results in a park environment. The vehicle traversed an approximate “figure eight” shape along the dirt
track shown in the superimposed satellite images. The blue ellipsis represent the spatial feature estimates, stars represent the
ground truth map and the blue line is the estimated robot trajectory. Figure (a) shows the results from running the filter with
the probability of detection proposed in this paper. Figure (b) shows the filter running with a constant probability of detection
within a circular field of view.

the derived probability of detection model was compared with
a typical implementation which assumed constant detection
statistics within the sensor field of view.
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